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Introduction

Theory: what characteristics might we want?

I exchangeability

I projectivity/consistency

I large support

→ de Finetti’s representation theorem
Applications: distributions over trees

I The nested Chinese restaurant process and the Dirichlet
diffusion tree

I Kingman’s coalescent

If we have time: fragmentation-coagulation processes.



Exchangeability

I Intuition: Data = pattern + noise

I Consider data X1,X2, ... where Xi ∈ X .

I A very strong assumption we could make: Xi are i.i.d. (in the
Bayesian paradigm this corresponds to data=noise)

I An often reasonable assumption: Xi are exchangeable

X1,X2, ... are exchangeable if P(X1,X2, ...) is invariant under any
finite permutation σ, i.e.

P(X1,X2, ...) = P(Xσ(1),Xσ(2), ...)

We can still have dependence!
Intuition: the order of the observations doesn’t matter.



Exchangeability: the CRP

Recall the CRP predictive probability:

P(cn = k |c1, ..., cn−1) =

{ ak,n−1

n−1+θ k ∈ {1, . . . ,Kn}
θ

n−1+θ k = Kn + 1

where Kn is the number of blocks after assigning cn and
ak,n =

∑n
i=1 I[ci = k]. Easy to show that

P(c1, ..., cn) =
θK−1

∏K
k=1 1 · 2 · · · (ak,n − 1)

(θ + 1) · · · (θ + n − 1)

=
Γ(θ)θK

Γ(θ + n)

K∏

k=1

Γ(ak,n)

using Γ(a + 1) = aΓ(a). Just depends on the size and number of
blocks, and n. No dependence on the order: exchangeable! (but
dependence...)



Exchangeability: breaking the CRP

I want more reinforcement! Let’s square those counts.

P(cn = k|c1, ..., cn−1) =





a2k,n−1∑K
i=1 a

2
i,n−1+θ

k ∈ {1, . . . ,Kn}
θ∑K

i=1 a
2
i,n−1+θ

k = Kn + 1

But no longer exchangeable :(

P(c1, ..., cn) =
θK−1

∏K
k=1 12 · 22 · · · (ak,n − 1)2

(θ + 1)(θ +
∑K2

i=1 a2i ,2) · · · (θ +
∑Kn−1

i=1 a2i ,n−1)



Projectivity

I This is a consistency property.

I Consider the finite sequence of random variables
X1,X2, ...,XN , with law PN .

I Projectivity requires that

PN−1(X1, ...,XN−1) =

∫
PN(X1,X2, ...,XN)dXN

I Priors with a sequential generative process get this “for free”
(e.g. the CRP):

PN(X1,X2, ...,XN) = PN−1(X1, ...,XN−1)P(XN |X1, ...,XN−1)



Projectivity: a counterexample

The uniform distribution on partitions is exchangeable but not
projective:

1/5 {{1, 2, 3}}
1/5 {{1, 2}, {3}}
1/5 {{1}, {2, 3}}
1/5 {{1, 3}, {2}}
1/5 {{1}, {3}, {2}}

2/5 {{1, 2}}

3/5 {{1}, {2}}



de Finetti’s theorem
I Kolmogov extension theorem: if PN are projective then there

exists a limiting distribution P on the infinite sequence
X1,X2, ... whose finite dimensional marginals are given by PN

I de Finetti’s theorem: in that case, if X1,X2, ... are
exchangeable then there exists Q s.t.

P(X1,X2, ...) =

∫

M(X )

∏

i

µ(Xi )Q(dµ)

where M(X ) is the space of probability measures on X and
µ ∈ M(X ) is a random probability measure.

I As a graphical model:

µ ∼ Q

Xi |µ ∼iid µ ∀i

I In words: any exchangeable sequence of r.v.s can be
represented as (formally, is equal in distribution to) a mixture
of i.i.d. r.v.s.



de Finetti’s theorem: notes

I Q is a “distribution over distributions”: sometimes called the
de Finetti mixing measure

I Not a constructive proof: sometimes we can characterise Q
nicely (e.g. the Dirichlet process for the CRP, the beta
process for the Indian buffet process), sometimes not (e.g. the
tree priors presented later)

I Decomposition into pattern µ and noise

I Motivates Bayesian hierarchical models: Q is the prior

I µ is ∞-dimensional in general but might be finite in some
cases (e.g. proportion ones for binary sequence)

I Just one example of a family of “ergodic decomposition
theorems”: group invariance → integral decomposition (e.g.
Aldous-Hoover theorem for random graphs or arrays)

I Can get more formal: µ is determined by the limiting
empirical distribution of the data, or the tail-σ-algebra of the
sequence Xi



Support and consistency

I The space of probability measures M(X ) might be finite (e.g.
for X = {1, 2}) or infinite (e.g. for X = N or R)

I Nonparametric models can have support (non-zero probability
mass) on infinite dimensional M(X ) whereas a parametric
model can only put support on a finite-dimensional subspace
[figure from Teh and Orbanz (2011)]

M(X )

Model

P0 = Pθ0

P0 outside model:
misspecified

"truth"



Consistency

I Under mild conditions (e.g. identifiability) Bayesian models
exhibit weak consistency: in the infinite data limit the
posterior will converge to a point mass at the correct
parameter value (µ), assuming this was sampled from the
prior (says nothing about model misspecification, or
approximate inference)

I Frequentist consistency (consistency for some true
P0 ∈ M(X ) in some class) is more difficult to ensure: some
cases are known, e.g. Dirichlet process mixtures of diagonal
covariance Gaussians for smooth densities.

I Convergence rates are also an active area of research: smooth

parametric models typically get n−
1
2



Break

Next up: priors over trees.



Motivation

I True hierarchies

I Parameter tying

I Visualisation and
interpretability
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Trees

I For statistical applications we are usually interested in trees
with labelled leaves.

I Mathematically we can think of this as a hierarchical partition
or a acyclic graph.

I Usually we distinguish the root node.

I e.g. for {{{1, 2, 3}, {4, 5}}, {{6, 7}}} the tree is

1 2 3 4 5 6 7



Nested CRP

I Distribution over hierarchical partitions

I Denote the K blocks in the first level as {B1
k : k = 1, ...,K}

I Partition these blocks with independent CRPs

I Denote the partition of B1
k as {B2

kl : l = 1, ...,Kk}
I Recurse for S iterations, forming a S deep hierarchy

1 2 3 4 5 6 7

B1
1 B1

2

B2
11 B2

12 B2
21

I Used to define a hierarchical topic model, see Blei et al.
(2010)



nCRP: when to stop?

Two approaches

I Use a finite depth S

I Work with the infinitely deep tree

In the later case we can either

I Augment with a per node probability of stopping, e.g. Adams
et al. (2009)

I Integrate over chains of infinite length, e.g. Steinhardt and
Ghahramani (2012)



The Dirichlet diffusion tree

I The Dirichlet diffusion tree (DDT,
Neal (2003)) is the continuum limit
of the nCRP

I Embed an S-deep nCRP in
continuous time R+ such that the
“time” of level i is i/

√
S

I Set the concentration parameter of
each CRP to θ = 1/

√
S

I Take the limit as S →∞
I Ignore degree two nodes (apart

from the root)

I What does this process look like?



The Dirichlet diffusion tree

I Item 1 sits at its own table for all time R+

For item i

I sits at the same table as all the other previous items at time
t = 0

I In time interval [t, t + dt], splits off to start its own table with
probability dt/m, where m is the number of previous items at
this table (at time t)

I If a previous item started a new table (this is a “branch
point”) then choose the two tables with probability proportion
to the number of items that previously went each way



The Dirichlet diffusion tree

I While the nCRP allowed arbitrary branching, the DDT only
has binary branching events: this is addressed by the Pitman
Yor diffusion tree (K and Ghahramani, 2011)

I Branches now have associated branch lengths: these came
from chains in the nCRP

I Items will “diverge” to form a singleton table at some finite t
almost surely

I Draw this



As a model for data

I We have a prior over trees with unbounded depth and width.
However, difficult to use with unbounded divergence times.

I Solution: transform the branch times t according to
t ′ = A−1(t) where A−1 : R+ → [0, 1] and is strictly
increasing, e.g. A−1(t) = 1− e−t/c ,A(t ′) = −c log(1− t ′)

I Equivalent to changing the probability of divergence in
[t, t + dt] to a(t)dt/m where a(t) = A′(t) = c/(1− t).



Diffusion on the tree

I We will model data x at the leaves using a diffusion process
on the tree

I Interpretation of the tree structure as a graphical model

P(xchild|xparent) = k(xchild|xparent, tchild − tparent)

I We will focus on Brownian (Gaussian) diffusion:

k(xchild|xparent, tchild− tparent) = N(xchild; xparent, tchild− tparent)

I This allows the marginal likelihood P(xleaves|tree) to be
calculated using a single upwards sweep of message passing
(belief propagation)



time
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Properties

I Exchangeable (we can show this by explicit calculational of
the probability of the tree structure, divergence times and
locations), see proof in Neal (2003)

I Projective by its sequential construction

I Positive support for any binary tree



624 R. M. Neal

3. PROPERTIES OF DIRICHLET DIFFUSION TREE PRIORS

The properties of a Dirichlet diffusion tree prior vary with the choice of divergence function,
a(t). I will investigate these properties here by looking at data sets generated from these priors.
I also investigate when the distributions produced are continuous and absolutely continuous.
More details on the properties of Dirichlet diffusion tree priors are found in (Neal 2001).
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Figure 3. Generation of a two-dimensional data set from the Dirichlet diffusion tree prior withσ = 1
anda(t) = 1/(1−t). The plot on the left shows the first twenty data points generated, along with the
underlying tree structure. The right plot shows 1000 data points obtained by continuing the procedure
beyond these twenty points.
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Figure 4. Two data sets of 1000 points drawn from Dirichlet diffusion tree priors withσ = 1. For the
data set on the left, the divergence function used wasa(t) = (1/4)/(1−t). For the data set on the right,
a(t) = (3/2)/(1−t).

Divergence functions of the forma(t) = c/(1− t) have integrals that diverge only log-
arithmically ast → 1: A(t) =

∫ t
0 a(u) du = −c log(1− t). Distributions drawn from such

a prior will be continuous — ie, the probability that two data points will be identical is zero.



Kingman’s coalescent

I The DDT is an example of a Gibbs fragmentation tree
(McCullagh et al., 2008)

I We can also construct trees using coagulation processes

I Kingman’s coalescent (KC Kingman, 1982): iteratively merge
subtrees, starting with all leaves in their own subtrees.

I Can also be derived as the continuum limit of a population
genetics model (the Wright-Fisher model) of large populations
of haploid individuals (i.e. only one parent)



Kingman’s coalescent

I Subtrees merge independently with rate 1: for m subtrees the
time until the next merge is Exp(m(m − 1)/2)

I Used in a similar manner to the DDT for hierarchical
clustering in Teh et al. (2008)
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Figure 1: (a) Variables describing the n-coalescent. (b) Sample path from a Brownian diffusion
coalescent process in 1D, circles are coalescent points. (c) Sample observed points from same in
2D, notice the hierarchically clustered nature of the points.

2 Kingman’s coalescent

Kingman’s coalescent is a standard model in population genetics describing the common genealogy
(ancestral tree) of a set of individuals [8, 9]. In its full form it is a distribution over the genealogy of
a countably infinite set of individuals. Like other nonparametric models (e.g. Gaussian and Dirich-
let processes), Kingman’s coalescent is most easily described and understood in terms of its finite
dimensional marginal distributions over the genealogies of n individuals, called n-coalescents. We
obtain Kingman’s coalescent as n→∞.

Consider the genealogy of n individuals alive at the present time t = 0. We can trace their ancestry
backwards in time to the distant past t=−∞. Assume each individual has one parent (in genetics,
haploid organisms), and therefore genealogies of [n] = {1, ..., n} form a directed forest. In general,
at time t≤0, there arem (1≤m≤n) ancestors alive. Identify these ancestors with their correspond-
ing sets ρ1, ..., ρm of descendants (we will make this identification throughout the paper). Note that
π(t) = {ρ1, ..., ρm} form a partition of [n], and interpret t 7→π(t) as a function from (−∞, 0] to the
set of partitions of [n]. This function is piecewise constant, left-continuous, monotonic (s≤ t implies
that π(t) is a refinement of π(s)), and π(0)={{1}, ..., {n}} (see Figure 1a). Further, π completely
and succinctly characterizes the genealogy; we shall henceforth refer to π as the genealogy of [n].

Kingman’s n-coalescent is simply a distribution over genealogies of [n], or equivalently, over the
space of partition-valued functions like π. More specifically, the n-coalescent is a continuous-time,
partition-valued, Markov process, which starts at {{1}, ..., {n}} at present time t= 0, and evolves
backwards in time, merging (coalescing) lineages until only one is left. To describe the Markov
process in its entirety, it is sufficient to describe the jump process (i.e. the embedded, discrete-time,
Markov chain over partitions) and the distribution over coalescent times. Both are straightforward
and their simplicity is part of the appeal of Kingman’s coalescent. Let ρli, ρri be the ith pair of
lineages to coalesce, tn−1 < · · ·< t1 < t0 = 0 be the coalescent times and δi = ti−1− ti > 0
be the duration between adjacent events (see Figure 1a). Under the n-coalescent, every pair of
lineages merges independently with rate 1. Thus the first pair amongst m lineages merge with rate(
m
2

)
= m(m−1)

2 . Therefore δi∼Exp
((
n−i+1

2

))
independently, the pair ρli, ρri is chosen from among

those right after time ti, and with probability one a random draw from the n-coalescent is a binary
tree with a single root at t=−∞ and the n individuals at time t=0. The genealogy is given as:

π(t) =





{{1}, ..., {n}} if t = 0;
πti−1 − ρli − ρri + (ρli ∪ ρri) if t = ti;
πti if ti+1 < t < ti.

(1)

Combining the probabilities of the durations and choices of lineages, the probability of π is simply:

p(π) =
∏n−1
i=1

(
n−i+1

2

)
exp

(
−
(
n−i+1

2

)
δi
)
/
(
n−i+1

2

)
=
∏n−1
i=1 exp

(
−
(
n−i+1

2

)
δi
)

(2)

The n-coalescent has some interesting statistical properties [8, 9]. The marginal distribution over
tree topologies is uniform and independent of the coalescent times. Secondly, it is infinitely ex-
changeable: given a genealogy drawn from an n-coalescent, the genealogy of any m contemporary
individuals alive at time t ≤ 0 embedded within the genealogy is a draw from the m-coalescent.
Thus, taking n → ∞, there is a distribution over genealogies of a countably infinite population
for which the marginal distribution of the genealogy of any n individuals gives the n-coalescent.
Kingman called this the coalescent.

2



Fragmentation-coagulation processes
I The DDT and KC are dual in the following sense: start with a

CRP distributed partition, run DDT for dt, then KC for dt,
and the result is still CRP distributed with the same
parameters

I Used to construct the fragmentation-coagulation (FC)
process: a reversible, Markov partition-valued process with the
CRP as its stationary distribution

I Applied to modelling genetic variation (Teh et al., 2011)

C

F

F

C

C

0 T

|c|
µ + i − 1

R
µR

|a|
|a|
|c|

Figure 1: FCP cartoon. Each line is a sequence
and bundled lines form clusters. C: coagula-
tion event. F: fragmentation event. Fractions
are, for the orange sequence, from left to right:
probability of joining cluster c at time 0, prob-
ability of following cluster a at a fragmentation
event, rate of starting a new table (creating a
fragmentation), and rate of joining with an ex-
isting table (creating a coagulation).

Following the various popular culinary processes in Bayesian nonparametrics, we will start by de-
scribing the law of π in terms of the conditional distribution of the cluster membership of each
sequence i given those of 1, . . . , i − 1. Since we have a Markov process with a time index, the
metaphor is of a Chinese restaurant operating from time 0 to time T , where customers (sequences)
may move from one table (cluster) to another and tables may split and merge at different points
in time, so that the seating arrangements (partition structures) at different times might not be the
same. To be more precise, define π|[i−1] = (π|[i−1](t), t ∈ [0, T ]) to be the projection of π onto
the first i − 1 sequences. π|[i−1] is piecewise constant, with π|[i−1](t) ∈ Π[i−1] describing the
partitioning of the sequences 1, . . . , i − 1 (the seating arrangement of customers 1, . . . , i − 1) at
time t. Let ai(t) = c\{i}, where c is the unique cluster in π|[i](t) containing i. Note that either
ai(t) ∈ π|[i−1](t), meaning customer i sits at an existing table in π|[i−1](t), or ai(t) = ∅, which will
mean that customer i sits at a new table. Thus the function ai describes customer i’s choice of table
to sit at through times [0, T ]. We define the conditional distribution of ai given π|[i−1] as a Markov
jump process evolving from time 0 to T with two parameters µ > 0 and R > 0 (see Figure 1):

i = 1: The first customer sits at a table for the duration of the process, i.e. a1(t) = ∅ ∀t ∈ [0, T ].
t = 0: Each subsequent customer i starts at time t = 0 by sitting at a table according to CRP

probabilities with parameter µ. So, ai(0) = c ∈ π|[i−1](0) with probability proportional to
|c|, and ai(0) = ∅ with probability proportional to µ.

F1: At time t > 0, if customer i is sitting at table ai(t−) = c ∈ π|[i−1](t−), and the table c
fragments into two tables a, b ∈ π|[i−1](t), customer i will move to table a with probability
|a|/|c|, and to table b with probability |b|/|c|.

C1: If the table c merges with another table at time t, the customer simply follows the other
customers to the resulting merged table.

F2: At all other times t, if customer i is sitting at some existing table ai(t−) = c ∈ π|[i−1](t),
then the customer will move to a new empty table (ai(t) = ∅) with rate R/|c|.

C2: Finally, if i is sitting by himself (ai(t−) = ∅), then he will join an existing table ai(t) =
c ∈ π|[i−1](t) with rate R/µ. The total rate of joining any existing table is |π|[i−1](t)|R/µ.

Note that when customer i moves to a new table in step F2, a fragmentation event is created, and
all subsequent customers who end up in the same table will have to decide at step F1 whether to
move to the original table or to the table newly created by i. The probabilities in steps F1 and F2
are exactly the same as those for a Dirichlet diffusion tree [19] with constant divergence function
R. Similarly step C2 creates a coagulation event in which subsequent customers seated at the two
merging tables will move to the merged table in step C1, and the probabilities are exactly the same
as those for Kingman’s coalescent [20, 21]. Thus our FCP is a combination of the Dirichlet diffusion
tree and Kingman’s coalescent. Theorem 3 below shows that this combination results in FCPs being
stationary Markov processes with CRP equilibrium distributions. Further, FCPs are reversible, so in
a sense the Dirichlet diffusion tree and Kingman’s coalescent are duals of each other.

Given π|[i−1], π|[i] is uniquely determined by ai and vice versa, so that the seating of all n customers
through times [0, T ], a1, . . . , an, uniquely determines the sequential partition structure π. We now
investigate various properties of π that follows from the iterative construction above. The first is
an alternative characterisation of π as an MJP whose transitions are fragmentations or coagulations,
an unsurprising observation since both the Dirichlet diffusion tree and Kingman’s coalescent, as
partition-valued processes, are Markov.

3



Tree models I didn’t talk about

I λ-coalescents: broad class generalising Kingman’s coalescent
(Pitman, 1999)

I Polya trees: split the unit interval recursively (binary splits)
(Lavine, 1992; Mauldin et al., 1992), used for univariate
density modelling

I Tree-structured stick breaking: a stick breaking representation
of the nested CRP. Uses per node stopping probabilities
(Adams et al., 2009)

I Time marginalised KC (Boyles and Welling, 2012)

I No prior (implicitly uniform)! Some work does ML estimation
of trees while integrating over other variables (Heller and
Ghahramani, 2005; Blundell et al., 2010)



Inference
I Detaching and reattaching subtrees (Neal, 2003; Boyles and

Welling, 2012; K et al., 2011)

I Sequential Monte Carlo (Bouchard-Côté et al., 2012; Gorur
and Teh, 2008)

I Greedy agglomerative methods (Heller and Ghahramani, 2005;
Blundell et al., 2010)

large but it does so much more slowly (compared to the
BHC mixture proportion assignment). When nR = 2,
this assignment agrees with BHC-γ.

2.2 Relation to BHC and DP mixture models

Bayesian rose trees are a strict generalisation of
BHC—if every node is restricted to have just two chil-
dren we will recover BHC. Heller and Ghahramani
(2005) described two parametrisation of πT which we
shall refer to as BHC-γ and BHC-DP. BHC-γ sets
πT = γ, γ being a fixed hyperparameter, and the
BRT model we just described is a generalisation of
this model. On the other hand BHC-DP sets up πT
such that it produces a lower bound on the marginal
likelihood of a corresponding Dirichlet process (DP)
mixture. A similar set-up can allow BRT to produce
a lower bound as well, though we will now argue that
this is in fact undesirable.

Recall that the marginal probability of data under a
DP mixture model is a convex combination of expo-
nentially many terms, each of which is the probability
of the data under a different partition of the data items
into clusters. BHC-DP produces a lower bound on this
marginal probability by including only the terms cor-
responding to partitions which are consistent with the
constructed binary tree. A similar setting of πT ’s in
BRT allows it to also produce a lower bound on the
DP mixture marginal likelihood. However, BRTs gen-
erally correspond to much smaller sets of partitions
than binary trees—if we replace each non-binary in-
ternal node of the rose tree with a cascade of binary
nodes we will get a superset of partitions (see also Fig-
ure 1 and Section 4). This implies that the BRT lower
bound will be no higher than the BHC lower bound.

The above argument obviates the use of Bayesian rose
trees as an approximate inference method for DP mix-
tures since they correspond to smaller sets of partitions
of the data. In fact our reason for using rose trees is
precisely because the sets of partitions are smaller—if
there is no structure in the data to support a more
complex model, by Occam’s Razor we should prefer a
simpler model (reflected in terms of a smaller number
of partitions). This view of hierarchical clustering is
very different from the one expounded by Heller and
Ghahramani (2005).

3 Greedy construction of Bayesian
rose tree mixtures

We take a model selection approach to finding a rose
tree structure given data. Ideally, we wish to find a
rose tree T ∗ maximising the marginal probability of

Ta Tb Tc Td Te

Ti Tj

Ta Tb Tc Td Te

Ti Tj

Join (Tm)

Ta Tb Tc

Td Te

Tj

Absorb (Tm)

Ta Tb Tc Td Te

Collapse (Tm)

Figure 3: Merges considered during greedy search.

the data D:

T ∗ = argmax
T

p(D|T ) (12)

This is intractable since there is a super-exponential
number of rose trees.

Instead, rose trees can be constructed in a greedy ag-
glomerative fashion as follows. Initially every data
point is assigned to its own rose tree: Ti = {xi} for all
data points xi. At each step of our algorithm we pick
two rose trees Ti and Tj and merge them into one tree
Tm. This procedure repeats until just one tree remains
(for n data points this will occur after n− 1 merges).

To allow for nodes with more than two children, we
consider three types of merges which we call a join,
an absorb, and a collapse (Figure 3). In all operations
the merged rose tree Tm has leaves(Tm) = leaves(Ti)∪
leaves(Tj), the difference being the resulting structure
at the root of the merged tree. For a join, a new
node is created with children Tm = {Ti, Tj}. For an
absorb Tm = ch(Ti)∪{Tj}, that is, tree Tj is absorbed
as a child of Ti. This operation is not symmetric so
we also consider the converse (Tm = {Ti} ∪ ch(Tj)).
Finally, a collapse merges the roots of both trees Tm =
ch(Ti) ∪ ch(Tj).

Each step of the algorithm then consists of picking a
pair of trees as well as one of four possible merge oper-
ations (there are two absorb possibilities). The pair of
trees and merge operation picked are the combination
that maximises the likelihood ratio:

L(Tm) =
p(leaves(Tm)|Tm)

p(leaves(Ti)|Ti)p(leaves(Tj)|Tj)
(13)

We use the likelihood ratio rather than
p(leaves(Tm)|Tm) because the denominator makes
L(Tm) comparable across different choices with trees
Ti and Tj of differing sizes (Friedman, 2003; Heller
and Ghahramani, 2005).



Conclusions

I Exchangeability, projectivity and support are key
characteristics to consider when designing models

I Proving consistency and convergence rates is an active area of
research

I There are a lot of priors over the space of trees with
interesting relationsips between them

I Rich probability literature on many of these processes
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