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Introduction

Theory: what characteristics might we want?
» exchangeability
> projectivity/consistency
> large support

— de Finetti's representation theorem
Applications: distributions over trees

» The nested Chinese restaurant process and the Dirichlet
diffusion tree

» Kingman's coalescent

If we have time: fragmentation-coagulation processes.



Exchangeability

» Intuition: Data = pattern + noise
» Consider data Xy, X, ... where X; € X.

» A very strong assumption we could make: X; are i.i.d. (in the
Bayesian paradigm this corresponds to data=noise)

> An often reasonable assumption: X; are exchangeable

X1, Xa, ... are exchangeable if P(X1, Xa,...) is invariant under any
finite permutation o, i.e.

P(X1, X2,...) = P(Xa(l), X5(2)» )

We can still have dependence!
Intuition: the order of the observations doesn't matter.



Exchangeability: the CRP

Recall the CRP predictive probability:
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where K, is the number of blocks after assigning ¢, and
akn = g I[ci = k]. Easy to show that
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using ['(a+ 1) = al'(a). Just depends on the size and number of
blocks, and n. No dependence on the order: exchangeable! (but
dependence...)



Exchangeability: breaking the CRP

| want more reinforcement! Let's square those counts.
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Projectivity

v

This is a consistency property.

v

Consider the finite sequence of random variables
X1, X5, ..., Xy, with law Py.

Projectivity requires that

v

PN_l(Xl,...,XN_l):/PN(Xl,Xg,...,XN)dXN

v

Priors with a sequential generative process get this “for free”
(e.g. the CRP):

PN(X17X2,...,XN) - PN_]_(X]_,...,XN_]_)P(XN|X]_,...,XN_]_)



Projectivity: a counterexample

The uniform distribution on partitions is exchangeable but not
projective:
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de Finetti’'s theorem

» Kolmogov extension theorem: if Py are projective then there
exists a limiting distribution P on the infinite sequence
X1, Xa, ... whose finite dimensional marginals are given by Py
» de Finetti's theorem: in that case, if X1, Xo, ... are
exchangeable then there exists @ s.t.

PG Xer) = | @@

where M(X) is the space of probability measures on X" and
w € M(X) is a random probability measure.
» As a graphical model:

p~Q
Xilu ~™ p Vi
» In words: any exchangeable sequence of r.v.s can be

represented as (formally, is equal in distribution to) a mixture
of ii.d. r.v.s.



de Finetti’'s theorem: notes

» @ is a “distribution over distributions”: sometimes called the
de Finetti mixing measure

» Not a constructive proof: sometimes we can characterise @
nicely (e.g. the Dirichlet process for the CRP, the beta
process for the Indian buffet process), sometimes not (e.g. the
tree priors presented later)

» Decomposition into pattern p and noise
» Motivates Bayesian hierarchical models: @ is the prior

> 1 is oo-dimensional in general but might be finite in some
cases (e.g. proportion ones for binary sequence)

> Just one example of a family of “ergodic decomposition
theorems”: group invariance — integral decomposition (e.g.
Aldous-Hoover theorem for random graphs or arrays)

» Can get more formal: pu is determined by the limiting
empirical distribution of the data, or the tail-o-algebra of the
sequence X;



Support and consistency

» The space of probability measures M(X') might be finite (e.g.
for X = {1,2}) or infinite (e.g. for X = N or R)

» Nonparametric models can have support (non-zero probability
mass) on infinite dimensional M(X’) whereas a parametric

model can only put support on a finite-dimensional subspace
[figure from Teh and Orbanz (2011)]

Model

Py outside model:
misspecified

Py = Pg,
"truth"



Consistency

» Under mild conditions (e.g. identifiability) Bayesian models
exhibit weak consistency: in the infinite data limit the
posterior will converge to a point mass at the correct
parameter value (i), assuming this was sampled from the
prior (says nothing about model misspecification, or
approximate inference)

» Frequentist consistency (consistency for some true
Py € M(X') in some class) is more difficult to ensure: some
cases are known, e.g. Dirichlet process mixtures of diagonal
covariance Gaussians for smooth densities.

» Convergence rates are also an active area of research: smooth
parametric models typically get N3



Break

Next up: priors over trees.
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Trees

For statistical applications we are usually interested in trees
with labelled leaves.

Mathematically we can think of this as a hierarchical partition
or a acyclic graph.
Usually we distinguish the root node.

e.g. for {{{1,2,3},{4,5}},{{6,7}}} the tree is
o

1 2 3 4 5 6 7



Nested CRP

» Distribution over hierarchical partitions

Denote the K blocks in the first level as {B} : k =1,...,K}
Partition these blocks with independent CRPs

Denote the partition of Bf as {BZ : | =1, ..., Kk}

Recurse for S iterations, forming a S deep hierarchy

v

v

v

v

B Bl
Bi, | Bi, || B3
1 2 304 56 7

» Used to define a hierarchical topic model, see Blei et al.
(2010)



nCRP: when to stop?

Two approaches

> Use a finite depth S

» Work with the infinitely deep tree
In the later case we can either

» Augment with a per node probability of stopping, e.g. Adams
et al. (2009)

> Integrate over chains of infinite length, e.g. Steinhardt and
Ghahramani (2012)



The Dirichlet diffusion tree

» The Dirichlet diffusion tree (DDT,
Neal (2003)) is the continuum limit
of the nCRP

» Embed an S-deep nCRP in
continuous time R™ such that the
“time" of level i is i/v/S

» Set the concentration parameter of
each CRP to § = 1/V/S

» Take the limit as S — oo

» Ignore degree two nodes (apart
from the root)

» What does this process look like?



The Dirichlet diffusion tree

» Item 1 sits at its own table for all time R™
For item i
> sits at the same table as all the other previous items at time
t=20

> In time interval [t, t 4 dt], splits off to start its own table with
probability dt/m, where m is the number of previous items at
this table (at time t)

» If a previous item started a new table (this is a “branch
point”) then choose the two tables with probability proportion
to the number of items that previously went each way



The Dirichlet diffusion tree

» While the nCRP allowed arbitrary branching, the DDT only
has binary branching events: this is addressed by the Pitman
Yor diffusion tree (K and Ghahramani, 2011)

» Branches now have associated branch lengths: these came
from chains in the nCRP

> ltems will “diverge” to form a singleton table at some finite t
almost surely

» Draw this



As a model for data

» We have a prior over trees with unbounded depth and width.
However, difficult to use with unbounded divergence times.

» Solution: transform the branch times t according to
t' = A71(t) where A=l : R* — [0, 1] and is strictly
increasing, e.g. A71(t) =1 — et/ A(t') = —clog(1 — t')
» Equivalent to changing the probability of divergence in
[t, t + dt] to a(t)dt/m where a(t) = A'(t) = ¢/(1 — t).



Diffusion on the tree

» We will model data x at the leaves using a diffusion process
on the tree

> Interpretation of the tree structure as a graphical model

P(Xchi|d|Xparent) = k(XchiId|Xparenta tehild — tparent)

» We will focus on Brownian (Gaussian) diffusion:

k(XchiId|Xparenta tehild — tparent) = N(Xchild; Xparent; tchild — tparent)

» This allows the marginal likelihood P(Xjeaves|tree) to be
calculated using a single upwards sweep of message passing
(belief propagation)
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Properties

» Exchangeable (we can show this by explicit calculational of
the probability of the tree structure, divergence times and
locations), see proof in Neal (2003)

» Projective by its sequential construction

» Positive support for any binary tree



Figure 3. Generation of a two-dimensional data set from the Dirichlet diffusion tree prior with 1
anda(t) = 1/(1—t). The plot on the left shows the first twenty data points generated, along with the
underlying tree structure. The right plot shows 1000 data points obtained by continuing the procedure
beyond these twenty points.

Figure 4. Two data sets of 1000 points drawn from Dirichlet diffusion tree priors with 1. For the
data set on the left, the divergence function usedawas= (1/4)/(1—t). For the data set on the right,
a(t) = (3/2)/(1—t).



Kingman's coalescent

» The DDT is an example of a Gibbs fragmentation tree
(McCullagh et al., 2008)

> We can also construct trees using coagulation processes

» Kingman's coalescent (KC Kingman, 1982): iteratively merge
subtrees, starting with all leaves in their own subtrees.

» Can also be derived as the continuum limit of a population
genetics model (the Wright-Fisher model) of large populations
of haploid individuals (i.e. only one parent)



Kingman's coalescent

» Subtrees merge independently with rate 1: for m subtrees the
time until the next merge is Exp(m(m — 1)/2)

» Used in a similar manner to the DDT for hierarchical
clustering in Teh et al. (2008)
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Figure 1: (a) Variables describing the n-coalescent. (b) Sample path from a Brownian diffusion
coalescent process in 1D, circles are coalescent points. (c) Sample observed points from same in
2D, notice the hierarchically clustered nature of the points.



Fragmentation-coagulation processes

» The DDT and KC are dual in the following sense: start with a
CRP distributed partition, run DDT for dt, then KC for dft,
and the result is still CRP distributed with the same
parameters

» Used to construct the fragmentation-coagulation (FC)
process: a reversible, Markov partition-valued process with the
CRP as its stationary distribution

> Applied to modelling genetic variation (Teh et al., 2011)




Tree models | didn't talk about

» \-coalescents: broad class generalising Kingman's coalescent
(Pitman, 1999)

» Polya trees: split the unit interval recursively (binary splits)
(Lavine, 1992; Mauldin et al., 1992), used for univariate
density modelling

» Tree-structured stick breaking: a stick breaking representation
of the nested CRP. Uses per node stopping probabilities
(Adams et al., 2009)

» Time marginalised KC (Boyles and Welling, 2012)

» No prior (implicitly uniform)! Some work does ML estimation
of trees while integrating over other variables (Heller and
Ghahramani, 2005; Blundell et al., 2010)



Inference

» Detaching and reattaching subtrees (Neal, 2003; Boyles and
Welling, 2012; K et al., 2011)

e

» Sequential Monte Carlo (Bouchard-Coté et al., 2012; Gorur
and Teh, 2008)

» Greedy agglomerative methods (Heller and Ghahramani, 2005;
Blundell et al., 2010)




Conclusions

» Exchangeability, projectivity and support are key
characteristics to consider when designing models

» Proving consistency and convergence rates is an active area of
research

» There are a lot of priors over the space of trees with
interesting relationsips between them

» Rich probability literature on many of these processes
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